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: ABSTRACT: For the purpose of localizing a distant noisy target, or inversely,

- calibrating the receiving array, the time delays defined by the propagation across
-3 the array of the target-generated signal wavefronts are to be estimated in the

g presence of array self-noise. The Cramér-Rao matrix bound is used to show that

-3 either properly filtered beamformers or properly filtered systems of multiglier

correlators can be used to provide efficient estimates. The effect of subopiimally
filtering the array outputs is discussed.
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Optimum Passive Signal Processing for Array Delay Vector Estimation

This report briefly summarizes and then further develops the topics treated in the
author's Ph.D. thesis and reported in NOLTR 72-120. The work was partially funded
under Naval Ship Svstems Command Task Number 38692/SF11-121-101.

The report will be of inic-est te those working on passive sonar target localiza-
tion, optimum signal processing for passive sonars, and passive array calibration.
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Chapter i

Introduction

1.1 In many physical problems of interest, with sonar, radar, and seismology
as examples, the time records of the outputs of an array of sensors are observed
over some time interval and used to estimate the position of a distant noise
source. _Inversely, the position of the distant noise source may be known, and the
intent may be to estimate the positions of the sensors comprising the array.
Typically, the sensor outputs are amplitude scaled and delayed replicas of the
waveform from the distant noise source, corrupted by additive noises, usually
local in origin. If the ampiitude gradient across the array of the waveforms from
the distant source is negligible, essentially all of the geometric information is
encoded in the set of delays associated with the propagation across the array of
the wavefronts from the distant source. This paper discusses the theoretical
bounds on the precision with which the set of delays can be measured, and shows
that either properly filtered beamformers or properly filtered systems of correla-
tors can be Lsed to obtain estimates that achiave the theoretical bound.

1.2 The theoretical bound discussed is the Cramér-Rao matrix bound [1],
which is the appropriate bound to use when large numbers of samples, or
equivalently, long observation times, are used.

1.3 For the purposes of this paper, it is more convenient to use its inverse,
the Fisher Information Matr.x, and to compare the inverses of the matrices for the

beamformer and multiple correlator delay measurement schemes to the Fisher

Information Matrix.

WW&WMW TRl ¢ L




NOLTR 72-220 ’z

1.4 The results of Chapters 2 and 3 are developed in greater detail in [2],
as is the first half of Chapter 4. The remainder of Chapter 4 and Chapter 5 have

not been reported elsewhere.

1.5 The following notation is used: If A is a matrix, A'] is its inverse,
A*_is its conjugate, AT is its transpose, tr A is its trace, and det A is its
determinant. A square matrix whose elements off the main diagoral are all zero
may be written as diag (a], 8oy oo s an), where a, is the i-th diagonal element.
Vectors are column vectors unless otherwise specified. 1 denotes a vector with
every element a one (1). 0 is a matrix of zeros, and I is the identity matrix.
<e> is the gxpectation operator, and grad f is the row vector which is the gradient
of the scalar f. The gradient of a vector is the matrix in which the i-th row is
the gradient of the i-th component of the vector. The Kronecker delta is denoted
in the usual way as 61j’ Integrals of the form [5432 f dt are written as [T f dt,

and integrals of the form ]TﬁNf dw are written as [B f dw. The quantity wy 18

defined as wy = Nwo, where N and wg are defined in Chapter 2.

1.6 The symbols MLE, FIM, CRMB, and HOT are abbreviations for Maximum
Likelihood Estimate, Fisher Information Matrix, Cramér-Rao Matrix Bound, and Higher
Order Terms (as in series expansions), respectively. The symbols (CRMB) and (FIM)

represent the designated matrices themselves.
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Chapter 2

The Fisher Information Matrix

2.1 Assume that the signal wave fronts from 4 distant noise source propagate
across an M element array of sensors and that the signal amplitude gradient across
the array is negligible. The signal at the i-th sensor is s(t-di), where s(t) is
the signal at a reference point near the array, and di is the delay at the i-th
sensor. . Without loss of generality, the reference point is assumed to be at the
location of the first element in the array. Thus, d] = 0. The output of the i-th
sensor is

x;(t) = s(t-d;) + n(t), (1)

where ni(t) is the additive sensor noise. The M sensors are observed for T seconds,

- T/2 s t < T/2, and the M time records are represented by Fourier coefficients,
1 R 2
X;(w) = F f1 %;(t) exp{-jkagt} dt, (2)
where wy = 2n/T, and w = kwo. The following assumptions will determine the joint
density function for the random Fourier coefficients,

a. The random signal and each of the M additive sensor noises are all
stationary zero-mean Gaussian randcm processes.
b. A1l of the random processes are independent.
c. T is large compared to the correlation times of the random processes,
and also to the time needed for the signal wave fronts to transverse the array.
2.2 If X is a vector containing the Fourier coefficients as elements, if S(w)

and Ni(”) are the signal and noise power spectra at the i-th sensor, and if only

2-1
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Fourier coefficients up to frequency Nwo are to be processed, the density for X
can be written as

N
p(X) = [w””kg,det RKO1"T expi- £ XTOOR™ (DX (k) (3)
where: .

X(k) = (4 (a)s Xplyds -ee s Xyl )T "

Juyd Jukdy \ T
V(k) = (1,6 K92, o kM) (4)
N(k) = diag(N](wk), Nz(wk), eve s NM(wk))

R(K) = N(K) + S(ay) V(K) V' (K)

2.3 In what follows the frequency arguments of the functions discussed will

be generally suppressed. E will indicate a sum over the positive Fourier
+

M
frequencies being considered, while )} will be tsed to denote the array sum J .
i

i=1

When w appears following a sum g , it will be understood to stand for kmo.

+
2.4 Since det R(k) = (1 + Zi S/Ni) det N(k), only the exponential part of

the density function will depend on the di' Let the signal delay vector D be
defined as

- T
D - (dz, d3’ eoe 9 dM) e (5)
2.5 The likelihood function for D is

L(D) = [™ g, det RI™ expt- | R

(6)
B+

"
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2.6 The CRMB for unbiased estimators of the vector argument of the likelihood
function is the inverse of the FIM, denoted by (FIM), where

(FIM) = - < grad(grad In L(D))T >. (7)

. The gradients in equation {7) are taken with respect to the components of the

. vector D. If G is defined by

i

the inverse of the matrix R is

1

Rl = N

L (9)
Provided that only the elements of D depend on a and b, the typical element of the
FIM has the form

3 9 - Tu=1 97 3 y* Tyu=1u*
—<§E§E]nL(D)>--g+G<XN ﬁ(gs-v VIN'X >
a(D,-D_) 3(D,-D_)
2 S k “m k “m
=) wG67J) . (10)
B+ Em Nknm %a ab

2.7 From equation (10} it follows that the FIM pertinent to the estimation of

the vector D is

2 2 Ty w1l ety Teel
(FIM) = ] 2" ———{(tr N"') N_* - N1 1'N ], (1)

i

-1

In equaticn {11), Np is the N'] matri with the first row and column partitioned

away. Because of the assumed smoothness of all of the spectra relative to the

-t frequency increment wy = 2n/T, the FIM can also be written as

=1 3 T -l
p 11 Np]dw.

2
- - (FIM) = %;'IB w2 -——§-*§— [(tr N-]) N;] - N
1+2n—_-
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Chapter 3

The Maximum Likelihood Estimate

3.1 It is well known that when the MLE is based on a large number of
independent samples, it is consistent, asymptotically normal, a:'d asymptotically
efficient [3]. Since the observation time T is large compared to the process
correlation times, there shouid be, in some se1se, a large number of independent
samples. TIne covariance matrix for the error in the MLE for D should be the CRMB,
at least to first order.

3.2 The results that follow are independent of the true de’ay vector, and

the equations for the likelihood function and MLE are considerably simplified if

Ryt y : TR b D e e e N L R R LS B AR R L TRTRI DU P o1
mum%mm'mMWWWMMW{MWWMW%W‘- L Y eI B T Iy 'y !

the true delay vector is assumed to be 0. The vector D of this chapter is the MLE

and is therefore the measurement error. The steering vector corresponding to the

error D is

V= (1, explindyl, ..., expliudy}). (13)

The MLE vectors D and V satisfy

0 = grad In L(D)

= *

X;X
grad | G JJ ppeexpijuld - d.)) (14)
B+ in N

grad(A + BD + + D'CD + HOT),
?

e

AT b R

where by expanding exp{ju(dn - di)} as a power series, the vector B is seen to be

B=7 ueINICT - X,
L p p?'p

(1s)
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wnile the matrix C is determined by

*
X.X
PTed = § w6 IT glpidd, - ¢,)7 . (16)
B+ ik 1k
In equation (15), X_is the single frequency data vector with the first element *

p
partitioned away. The terms xix: in equation (16) are elements of the sample

covariance matrix at a single frequency based on T seconds of data. These sample
covariance elements do not converge, even if T is arbitrarily long [4]. However,
since T is large compared to the process correlation times, the spectra are
smooth encugh so that the sampie covariance can be averaged with samples from

nearby frequencies to provide statistical convergence. The ] summation in equa-
B+

3 * *
4 tion (16) provides such an averaging of the X;X . Thus, it is assumed that XX,

can be replaced by Rik =< xix: > in equation (16), from which it follows that

C=<C»>, or

o
[[]
l.—a
]-—o
P
z‘
-

2
2l =2 [ W) N N
B+ 1+ ZN_:. p P
il (17)
= -~ {FIM).
3.3 From equation {15), it follows immediately that < B > = 0, and not so

immediately that

2
To* 2 S 5 P D I
<BB >=7 2 ]—:T;- [(tr N )up Ny nup]
B+ LN,
1 (18)

= (FIM).
3.4 Neglecting the HOT, and assuming C = < C >, the vector D is given by
D=-<C>8", (19)
32
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so that: ' _ . f . } ;
<D>=0, ] ‘ NG B
and : | o . Co
A RS Y S o
o= (rmy”? Gy
; = (CRMB) .

3:5 Thu§ the MLE is unbia§ed, an& in the 1imit of large T achieves the CRﬁB.l .
The MLE processor can be readily implemented as indicated in Figure 1. "The MLE
processor is just a‘steered and filtered beamformer followed b} a square-law .
averager, The individué] inputs are each steered;aﬁd then fi!tered with filters

whose frequancy résponre is the inverse of the additive noise «pectrum for that
particular sensor. The'beam sum is then formed and fed to a fiiter whose squared

magnitude response is éF(jm)iz = G{w). The MLE is determined as that set of

steering delays that gives the maximum def]eciion of the output meter.

é
g
:
|
j:
%
i
5
, 2
=
3=
=
2|
5
H =
5
i§
3
E
:
;:

x(t) © d, N;‘(;) . - | o
[ ] ®  J
. . . + 1) s ‘r;. 70 )t -@.
: ; 1 - SQUARER - "TAVERAGER  METER :
X(t) o——1dy Ny (t:s) 1
STEERING
DELAYS:

FIGURE 1: Beamformer Imp]émentatioq of the MLE Processor
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Chapter 4

Correlator Delay Measurement Systems

4,1 The following schemc can be used to estimate the unknown delay vector D.
Let a system of correlators be used to form all the M{M-i)/2 correlograms corre-
sponding to processing all of the M input wave forms taken two at a time. The
individual correlators are assumed to have input filters for each channel, and the
position of the correlogram peak is used as a signal delay estimate for that
sensor pair. If each correlator is to provide an unbiased estimate of the corre-

sponding signal delay, the input filters must have the same phase response, and

hence can be taken to be identical filters. A typical correlator is shown in

Figure 2. The steering delay is adjusted to give tha maximum deflection of the

meter, and this defines the delay estimate for the correlator.

xi (t) O-—J‘Fij(w)

Flol _@ Zim(d;3)

AVERAGER METER
xj(t) Ol F,.j(m) dss
STEERING
DELAY

st e A O

FIGURE 2: A Typical Multiplier Correlator
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4,2 Let dij be the correlator estimate fo~ the signal delay from the i-th

to the j-th sensor, based on the correlation of the Xi(t) and Xj(t) time records.

Let eij and Fi be, respectively, the error in the estimate d j? and the filter
used on the inputs to the correlator. Define the following sca]ars, vectors, and
matrices:

G(ij;k1) = [(SN. sm)'SﬂIj .}) (S+N. esﬂ)(SJrN.aJk)]

) T
D = (dyps dy3s woe s dpys dogs oon s dypy qyy)
E = (e e ¢ )T
12% ©13* * » $(M-1)M
’,l
- A3 { 2 2 2 e
F = d]ag ('F.'Z‘ ’ iFls‘ 9 ooe 3 'F(H°])"l )

K= fg «5SF du
= diag (K;,» Kigs oo s K(M-Y)M)
6 = [6(ij;k1)]
4.3 The square matrix G has fur its elements the scalars G{ij;k1) positioned
according to the scheme determined by the crder of the subscripts in EET, where ij
is the row designation, and k1 the column designation. )

4.4 Using equations (22), tne covariance matrix for the correlator scheme

measurement error vector can be compactly written [2]:

- T
PE-<EE>

a (23)
= 21 kN fy PreFdu) .

4.5 The correlator delay measurement vector is related to the vector to be

estimated ,D, by the equation

DC =AD + E, (24)

4-2
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where the matrix A, with its rows and columns labeled with the same sets of ordered

subscripts used for the elements of D, {for the rows) and D (for the coiumns), has

for its element in the ij,k position
4.6 Since < E > = 0, the Gauss-Markov estimate [5] for the vector D based on
the correlator measurements is
D = [ATPE‘A]“ATDC, (26)
and the covariance matrix for the Gauss-Markcv estimate is
< (D-D)(D-D)7 > = [ATPE‘A]“. (27)

4.7 1In [2] it is demonstrated that if M = 2 or M = 3, the Gauss-Markov
estimate for D achieves the CRMB provided that the filters satisfy

2 _ ST/N.N.
!Fijl = i g . (28)

It was conjectured in [2] that the choice of filters given by equation {28) was
optimum for M > 3. The conjecture is in fact valid, and the Gauss-Markov estimate
50 obtained is in fact efficient, that is, achieves the CRMB. This is demonstrated

in what follows.

4.8 From the definitions in equations {22), and with the filters defired by
equation (28), the FIM of equation (11) is

T a7 199

(FIM) = 5— A'KA , (29}
which suggests investigating the possibility that

T, -1, 2 1 .7

A

o 1
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With the filters given by equation (28), the matrix FGF can be written as

2
S 1 1 1
F6F = ——=— diag ( R 2
ASY w L L"RLY .
P (313
3 .
) S /NaNBN y uT ‘
Tsa<BeysM (1 + ZN._S )2 aBy aBy’ .
i1 :

where uaBY is a column vector whose rows are labeled with the same scheme as is

used for the elements of DC’ and whose element in the ij row is

. m,m.,],m»memmx»mm.,mmmwmmumm,_m*nn‘enmﬂnm}nR&m"uh»’j’ammmmmmmmmmm.wmm&mmmw

Uaﬁy (ij) = 8.4 GBj - 8 5,3' + 8 673" (32)
Then the ma'trix
2 = - T K)
fg w FGF du = K oo Hoer Vagy Usgy ° (33)
where
= S3/N N N
aBy B¢ 2 duw. (34)

(1*213'_')
j i

4.9 Recursively applying the matrix inverse lemma [61 to the right side of

equation (33), the inverse can be written as

(gl FeFd) =T+ T ]

Tsa<d<y<M afy aBy (35)

where for the purposes of this paper it is not necessary to specify further the

matrix HaBy' From the relations defining the matrix A and the vector UaBy’ it ‘.
follows that
T _ i
A UaBY = -O_o (36)

4-4
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4.10 Thus, the inverse of the covariance matrix for the Gauss-Markov

estimate for D, with the correlator inputs filtered according to equation (23), is
To=1, _ T LT 2 -1
A P£ A= 2;-A K ([B w” FGF dw)™' KA

T T

LA (37)
b = (FI").

' 4.11 Thus, the correlator system optimally filtered according to equation

(28) provides an efficient estimate.

4-5
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Chapter 5 4

Suboptimally Filtered Correlator Systems

5.1 For diverse reasons the decision not to use the optimal filters of

equation (28) at the input to a correlator delay measurement may be made. It is E
% then relevant to investigate the degree to which the delay estimate is degraded.

The question can be answered in a simple way under the following hypothesis:

E . a. The ratio S/N; is the same at each sensor.

- ; b. Identical filters, F, are used on each input channel.

¢. The suboptimally filtered Gauss-Markov delay estimate is used.

Under these hypotheses, the matrix FGF becomes

FeF = [F|% (N2 + mis) 1 3

; 4 T -
] teacberat || oty Loy’ (8

where [ is the identity matrix and UuBY is defined in the same way as in the

preceding chapter. If the Gauss-Markov estimate is formed from the suboptimally

filtered delay estimates, the inverse of the covariance matrix for the Gauss-Markov

3 estimate is

3 T -1 T .7 2 -1

3 A" Pg A=3—RA K (fgu" FGF du)” KA

T 2 118 2 .7
-z-(lsm [F]™ (N + MNS) dw) " A" A (39)
g (]BuZSIFladw)z T
= 7= —

g wTIFP (Nz + MNS) dw

K ST AL i £ B0
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The FIM for this case is
2,2
(FIM) = I (fy u? ?—fl‘;—g do) AT A, (40)
N

5.2 Thus, the covariance matrices for the optimally and suboptimally N
filtered estimates differ by a constant factor, and it is easy to take account of
the effects of suboptimally filtering the inputs. Equations {39) and (40) can .
also be used to determine the degradation of tne delay estimate due to an

imprecise knowledge of either S(w) or N(w).

5-2
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